Chinese Journal of Tissue Engineering Research
Previous Articles Next Articles
Lü Cong-wei 1, 2, 3, Pu Ting 2, 3, Liao Zhen-hua3, Liu Wei-qiang 1, 3
Online:
2013-09-24
Published:
2013-09-24
Contact:
Liu Weo-qiang, M.D., Professor, Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Biomedical Materials and Implantable Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, Guangdong Province, China
weiqliu@hotmail.com
About author:
Lü Cong-wei, Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China; Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong Province, China; Key Laboratory of Biomedical Materials and Implantable Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, Guangdong Province, China
86366359@qq.com
Supported by:
National Science and Technology Support Planning Project, No. 2012BAI18B05*; Development Planning Project of Shenzhen Key Laboratory, No. CXB201005260044A*
CLC Number:
Lü Cong-wei, Pu Ting, Liao Zhen-hua,Liu Wei-qiang . Advances in research on anterior cervical fusion and replacement in vitro biomechanical experiment[J]. Chinese Journal of Tissue Engineering Research, doi: 10.3969/j.issn.2095-4344.2013.39.020 .
2.1 体外标本融合、置换实验的新进展 颈椎体外标本的实验研究日趋完善和全面。随着颈椎病患病率攀升,病变呈现复杂性,临床常需对多节段的椎间盘进行手术治疗。考虑椎间盘手术的疗效、禁忌证、运动范围和手术费用等问题,临床需体外标本实验研究为其提供参考。已有多位学者对颈椎体外标本融合、置换实验进行研究,新的进展主要体现在手术多节段、运动控制条件差异化、颈椎耦合运动测试、新型植入器械4个方面。 2.1.1 手术多节段 伴随临床颈椎多节段治疗越来越多的需求,由最常见的单节段,发展到双节段、3节段甚至更多节段的手术,除多节段融合、多节段置换,还发展出融合、置换混合手术方式[5]。据临床研究,对多节段颈椎病,融合结合颈椎次全椎体切除是一种直接有效的治疗方案,但手术累及节段越多,并发症发生的概率越高[6]。而对于颈椎置换,当病变节段大于等于3时,不允许所有病变节段都做置换治疗[7-8]。 为配合临床研究,为多节段手术提供更全面的指引,颈椎体外标本实验也由单节段研究向多节段发展。Cunningham等[5]研究单节段(C6-C7)置换、融合,双节段(C5-C7)置换、融合以及双节段(C5-C6)置换(C6-C7)融合混合治疗,测试手术节段、相邻节段的运动范围和中性区,指出单节段置换与完整组运动范围差异无显著性意义,单节段融合与完整组和置换组相比在轴向旋转运动范围差异有显著性意义;双节段混合实验C5-C6节段运动范围与完整组和单节段融合组、置换组相比显著增加;双节段融合后相邻节段运动范围较之双节段置换和双节段混合在轴向旋转和前屈后伸工况下显著增加。薛清华等[9]研究C3-C6和C4-C7两种3节段融合后相邻节段运动变化规律,结果显示,3节段融合效果略差于双节段融合效果,融合后的运动幅度可降低至融合前的30%左右。 2.1.2 运动控制条件差异化 颈椎标本体外实验通常选用2种运动控制方式,一种是载荷控制[10],另一种是位移控制。载荷控制是在标本上加上一定的载荷来控制颈椎的运动,一般有最大固定载荷和分级载荷两种模式[11-12]。国外学者多数采用最大固定载荷方式控制运动[13],这种方式可以使治疗前与治疗后手术节段和相邻节段运动范围、关节内压力等更具有可比性。分级载荷模式主要是研究在不同载荷下相邻节段的椎间孔孔径和面积等是否因载荷不同而发生变化。载荷控制模式下,相邻节段不会因为融合而改变椎间运动范围[14],即融合本身并没有给相邻节段带来应力集中现象。这是由于融合提高了整个标本的刚度,使得相同载荷下标本整体的运动范围减少。而位移控制作为另一种运动控制方式[15],主要研究治疗前与治疗后颈椎运动相同范围对手术节段和相邻节段的影响,采用这种方式每次加载均要求标本整体达到同样的运动范围,而手术节段运动范围的变化,会导致相邻节段的运动补偿[16],通过治疗后相邻节段和手术节段运动范围变化推断出相邻节段的生物力学规律。 2.1.3 颈椎耦合运动测试 颈椎运动比较复杂,在关节面有3种基本运动形式:滑动、旋转和滚动,由椎间盘及双侧小关节共同协调产生,是一个复杂的三维耦合运动。体外实验研究中常将其运动分解为前屈后伸、左右弯曲、左右旋转6种工况的独立运动,并未真实模拟人体的颈椎运动。目前有关耦合运动的体外标本研究、临床研究的报道较少。DeVries等[17]的山羊体外实验及Nagamoto等[18]的临床研究均显示颈椎运动在不同工况中存在耦合现象。Daniels等[19]对体外颈椎标本进行耦合运动测试,除6种独立工况外,还结合前屈后伸与左右弯曲,前屈后伸与左右旋转,左右旋转与左右弯曲和前屈后伸、左右弯曲与左右旋转4种耦合工况,结果表明耦合工况上下相邻阶段运动范围与手术节段稳定性较之独立工况差异无显著性意义。 2.1.4 新型植入器械 融合集成板:传统的融合治疗需减压后植骨并用融合板固定上下两个椎体,由于植骨和融合板的分离容易导致植骨塌陷等诸多治疗后并发症。文献[20-22]使用融合集成板与传统的植骨并固定融合板相比,结果表明集成板与传统板相比,治疗后稳定性差异无显著性意义,说明新型集成板可以达到融合的效果。由于集成板手术较为简单,且能减少术后并发症,未来在临床上有较好的应用前景。 全颈假体:全颈假体(Total Cervical Prosthesis)是美敦力公司的新型产品,由上下2个终板和中间椎体组成,上下两终板允许6°的运动范围。Wu等[23]通过对体外标本进行全颈假体和颈椎前路钢板(Anterior Cervical Plating)手术,观察相邻节段运动范围变化,并与intact状态比较,发现全颈假体不会引起相邻节段代偿运动,可防止相邻节段发生退变。 2.2 体外标本实验研究内容 颈椎前路融合、置换是治疗颈椎病的常用方案,已有不少学者对此进行体外标本生物力学研究,但由于标本间差异、加载控制模式、加载速度、加载量、加载设备和运动分析方法等多方面因素影响,导致现有的颈椎前路融合与置换体外标本生物力学研究结果难以一致、甚至相互矛盾。现有的研究内容主要集中在运动范围、关节突关节内压力、髓核内压力和椎间孔形态4个方面。 2.2.1 运动范围 体外标本实验要求整个颈椎治疗后要达到与治疗前相同的功能位置,并测量治疗前与治疗后手术节段和相邻节段的运动范围,通过对比实验数据得出手术对相邻节段运动的影响。Barrey等[24]研究了颈椎前路单双节段置换,单双节段融合及双节段混合实验对相邻节段运动范围的影响,发现单双节段置换保留颈椎接近正常的活动度,与融合治疗相比置换治疗使得相邻节段保持更好的生物力学条件。Phillips等[25]采用4种不同椎间盘假体进行单节段置换和双节段置换研究,比较前屈、后伸、左右弯曲、左右旋转6种工况的运动范围,得出单节段置换后前屈/后伸工况下手术节段运动范围较完整组有所增加,左右弯曲和左右旋转工况下无显著变化,对相邻节段运动范围影响不显著;双节段置换可以保留颈椎接近自然的运动状态,同时不影响手术节段和相邻节段的运动。据已有体外实验结果推测,多节段的置换可能比融合更具有优势。融合治疗会增加相邻节段的运动范围,从而导致相邻节段退化加速;而置换治疗可保留手术节段的运动,相邻节段运动范围与置换前相比差异无显著性变化,有效减缓相邻节段的退变速度。 2.2.2 关节内压力 颈椎双侧关节突关节和椎间盘构成了关节三联体结构(Tri-joint complex),任一结构的退变将导致整个椎间关节发生退变[26],许多学者研究椎间盘融合或置换对颈椎节段的影响[27],而对关节突关节内压力的研究则较少,研究关节突关节内压力具有十分重要的生物力学意义。Bauman等[28]研究了颈椎C5-C6节段用Prodisc-C假体置换后关节突关节内压力的变化,得出置换后C5-C6节段运动范围有所增加,关节内压力并无显著变化,固定旋转中心的椎间盘假体置换并不会使关节内负载增加。徐波等[29]研究了颈C4-C5节段前路融合和置换后左侧关节突关节内压力,发现颈椎前路融合内固定组在后伸、左侧屈和右旋关节突关节内压力有所减小,但是与完整组和置换组相比差异无显著性意义。颈椎人工椎间盘置换后关节突关节内压力与正常颈椎相比没有明显改变,可有效维持关节突间正常生理压力。房佐忠等[30]的研究结果显示双节段融合后邻近上位节段关节突关节内的压力增高;双节段置换可以恢复同位及邻近上位节段关节突关节内近似正常的压力,提示双节段人工椎间盘置换符合颈椎正常的生物力学性能的要求。体外标本研究结果显示置换不会导致相邻节段关节内压力发生显著变化[31]。 需要指出的是,颈椎体外标本关节突关节内压力的测量需切断关节囊韧带,这改变运动节段的生物力学性能[32],跟正常的生理状态有一定的差异。为了得到更加准确的关节面加载环境,使测量的关节内压力更接近真实状态,需进一步的研究更为复杂的颈部运动、多节段不同治疗方案和不同的加载方式对手术节段和相邻节段关节突关节内压力的影响。 2.2.3 髓核内压力 椎间内在压力对维持脊柱正常生理功能起到关键作用,为了研究颈椎间盘内在的力学性质,徐波等[33]使用完整组、C4-C5置换组和C4-C5前路融合内固定组3种治疗方案测量治疗后相邻节段椎间盘的髓核内压力,得出置换组与完整组在上相邻C3-C4与下相邻C5-C6节段髓核内压力差异无显著性意义,而前路融合组上下相邻节段髓核内压力均显著性增大,与有限元分析结果一致[34]。Barrey等[24]通过测试各节段在不同工况下的运动范围和相邻椎间盘内压力来评估置换效果,指出单节段置换时只在侧弯工况存在活动度减少,而增加1个置换节段,对颈椎模型的运动特点及邻近节段椎间盘内压力并没有显著影响。 椎间盘置换后相邻节段椎间盘髓核内压力与正常状态相近,可恢复相邻节段椎间盘的正常应力分布,对预防和延迟相邻节段退变的发生具有重要的临床意义。颈椎前路融合内固定导致相邻节段椎间盘髓核内压明显增大,相邻节段椎间盘更容易发生退行性病变。 尽管学者对椎间盘髓核内压力已做了大量的生物力学研究,但仍存在着诸多不足之处。现有的测量技术不能真实地反映髓核内原始的应力状态,也不能了解在体动态下整个椎间盘应力分布的变化。目前用于体外研究的颈椎标本均是剔除皮肤、肌肉组织后的标本,这造成了体内与体外实验的差异。实验结果难以与临床紧密结合,导致实验研究不能很好地满足临床的需要。随着科技的发展,多种实验手段的综合运用,多方法的协作研究,将给未来的相关理论研究带来更大的发展。 2.2.4 椎间孔形态 椎间孔形态变化与其生物力学性能紧密相关,同时是评估临床疗效的重要指标之一,因此研究椎间孔形态具有重要意义。目前有关颈椎人工椎间盘置换后颈椎间孔形态变化尚不多,胡朝晖等[35]探讨体外标本C4-C5、C5-C6椎间盘完整组、置换组、融合组在不同载荷下,对邻近上位(C3-C4)椎间孔形态的影响,得出置换后邻近上位椎间孔变化接近正常,椎间融合后其邻近上位椎间孔变化明显,初步证明置换治疗符合颈椎正常的生物力学要求;椎间融合后邻近上位椎间孔孔径变化明显,可能是引起椎间退变或退变加速的原因之一。 影响椎间孔形态的因素有很多,这是由其特殊的结构和周围的软组织共同作用所引起的,同时测量椎间孔高度和宽度也受到解剖因素、测量方法、个体差异等影响。未来的学者研究应尽可能将影响椎间孔形态的因素综合考虑,将实验造成的误差缩减至最小。"
[1]Helgeson MD, Bevevino AJ, Hilibrand AS, et al. Update on the evidence for adjacent segment degeneration and diseas. Spine J. 2013;13:342-351.
[2]王立公,常双超.广州市中青年不同人群颈椎病发病率的调查研究[J].中国疗养医学,2010,19(5):473-474.
[3]Coric D, Nunley PD, Guyer RD, et al. Prospective, randomized, multicenter study of cervical arthroplasty: 269 patients from the Kineflex-C artificial disc investigational device exemption study with a minimum 2-year follow-up. J Neurosurg Spine. 2011;15: 348-358.
[4]Galbusera F, Bellini CM, Brayda-Bruno M,et al. Biomechanical studies on cervical total disc arthroplasty: a literature review. Clin Biomech. 2008;23:1095-1104.
[5]Cunningham BW,Hu NB,Zorn CM,et al. Biomechanical comparison of single- and two-level cervical arthroplasty versus arthrodesis: effect on adjacent-level spinal. Spine J. 2010;10(4): 341-349.
[6]宫传圣.多节段颈椎病前路手术治疗方法与并发症分析[J].中外医疗,2010,29(36):100.
[7]Mununaneni PV,Robinson JC, Haid RW. Cervical arthroplasty with the PRESTIGE LP cervical disc. Neurosurgery. 2007;60 (4 Suppl 2):310-314.
[8]严亚波,雷伟,吴子祥,等.人工颈椎间盘假体的应用研究进展[J]. 国际生物医学工程杂志, 2009, 32(1): 60-64.
[9]薛清华,刘伟强.颈椎三节段融合术后相邻节段运动变化规律研究[J].北京生物医学工程, 2011,30(2):120-126.
[10]Robertson PA, Tsitsopoulos PP, Voronov LI, et al. Biomechanical investigation of a novel integrated device for intra-articular stabilization of the C1-C2 (atlantoaxial) joint. Spine J. 2012;12:136-142.
[11]Gabriel JP,Muzumdar AM,Khalil S ,et al. A novel crossed rod configuration incorporating translaminar screws for occipitocervical internal fixation: an in vitro biomechanical study. Spine J. 2011;11(1):30-35.
[12]陈书文,尹朝信,颜爱民.前屈后伸载荷下颈椎间孔的孔径变化:Bryan颈人工椎间盘置换与颈椎钢板植骨内固定的比较[J]. 中国组织工程研究与临床康复,2010,14(30):5523-5526.
[13]Kelly BP, Zufelt NA, Sander EJ, et al. The influence of fixed sagittal plane centers of rotation on motion segment mechanics and range of motion in the cervical spine. J Biomech. 2013;46(7):1369-1375.
[14]李超,阮狄克,徐成,等.颈椎前路融合对相邻节段影响的生物力学研究与临床短期观察[J].中国脊柱脊髓杂志,2008,18(1):28-31.
[15]Lee MJ, Dumonski MM, Phillips FM, et al. Disc Replacement Adjacent to Cervical Fusion: A Biomechanical Comparison of Hybrid Construct Versus Two-Level Fusion. Spine. 2011;36 (23): 1932-1939.
[16]姚女兆,王文军,金大地.新型人工髓核置换对临近上节段三维运动与椎间盘内压影响的实验研究[J]. 医用生物力学, 2011, 26(1): 81-86.
[17]DeVries NA, Gandhi AA, Fredericks DC, et al. Biomechanical analysis of the intact and destabilized sheep cervical spine. Spine. 2012;37(16): 957-963.
[18]Nagamoto Y, Ishii T, Sakaura H,et al. In vivo three-dimensional kinematics of the cervical spine during head rotation in patients with cervical spondylosis. Spine. 2011;36(10):778-783.
[19]Daniels HA, Paller DJ, Feller RJ, et al. Examination of cervical spine kinematics in complex, multiplanar motions after anterior cervical discectomy and fusion and total disc replacement. Int J Spine Surg. 2012;6(1):190-194.
[20]Beutler WJ, Clavenna AL, Gudipally M, et al. A biomechanical evaluation of a spacer with integrated plate for treating adjacent-level disease in the subaxial cervical spine. Spine J. 2012;12(7):585-589.
[21]Clavenna AL, Beutler WJ, Gudipally M, et al. The biomechanical stability of a novel spacer with integrated plate in contiguous two-level and three-level ACDF models: an in vitro cadaveric study. Spine J. 2012;12(2): 157-163.
[22]Wojewnik B, Ghanayem AJ, Tsitsopoulos PP, et al. Biomechanical evaluation of a low profile, anchored cervical interbody spacer device in the setting of progressive flexion-distraction injury of the cervical spine. Eur Spine J. 2013;22:135-141.
[23]Wu ZX, Han BJ, Zhao X, et al. Biomechanical Evaluation of a Novel Total Cervical Prosthesis in a Single-Level Cervical Subtotal Corpectomy Model. J Surg Res. 2012;175:76-81.
[24]Barrey C, Campana S, Persohn S, et al. Cervical disc prosthesis versus arthrodesis using one-level, hybrid and two-level constructs: an in vitro investigation. Eur Spine J. 2012;21: 432-442.
[25]Phillips FM, Tzermiadianos MN, Voronov LI, et al. Effect of Two-Level Total Disc Replacement on Cervical Spine Kinematics.Spine J. 2009;34(22): E794-E799.
[26]杨红波,李康华,唐磊彬,等.C5/6椎间盘置换术后C3/4关节突关节内压力变化的生物力学研究[J].湖南师范大学学报:医学版, 2012,9(3):68-71.
[27]Park DK, Lin EL, Phillips FM. Index and adjacent level kinematics after cervical disc replacement and anterior fusion: in vivo quantitative radiographic analysis. Spine. 2011;36: 721-730.
[28]Bauman JA, Jaumard NV, Guarino BB,et al. Facet joint contact pressure is not significantly affected by ProDisc cervical disc arthroplasty in sagittal bending: a single-level cadaveric study. Spine J. 2012;12(10):949-959.
[29]徐波,张忠民,赵卫东,等.颈椎人工椎间盘置换或前路融合内固定术后关节突间压力的改变[J].中国脊柱脊髓杂志,2010,20(5): 406-410.
[30]房佐忠,李康华.双节段人工颈椎间盘置换对邻近上位关节突关节影响的生物力学研究和临床观察[D].湖南长沙:中南大学, 2007.
[31]Botolin S, Puttlitz C, Baldini T, et al. Facet joint biomechanics at the treated and adjacent levels after total disc replacement. Spine. 2011;36:E27-32.
[32]Jaumard NV, Bauman JA, Welch WC, et al. Pressure measurement in the cervical spinal facet joint: considerations for maintaining joint anatomy and an intact capsule. Spine. 2011;36: 1197-203.
[33]徐波,金大地.人工颈椎间盘置换的相关生物力学研究[D].广东广州:南方医科大学, 2007.
[34]李斌,赵文志,陈秉智,等.人工椎间盘植入术后颈椎邻近节段生物力学变化的有限元分析[J].医用生物力学,2010,(2): 94-99.
[35]胡朝晖,李康华.双节段人工颈椎间盘置换后邻近上位椎间孔形态改变的生物力学研究及临床观察[D].湖南长沙:中南大学, 2007.
[36]Cunningham BW, Hu NB, Zorn CM, et al. Comparative fixation methods of cervical disc arthroplasty versus conventional methods of anterior cervical arthrodesis: serration, teeth, keels, or screws. J Neurosurg Spine. 2010;12:214-220.
[37]Sasso RC, Best NM, Metcalf NH, et al. Motion analysis of bryan cervical disc arthroplasty versus anterior discectomy and fusion: results from a prospective, randomized, multicenter, clinical trial. J Spinal Disord Tech. 2008;21(6): 393-399.
[38]Chang UK, Kim DH, Lee MC, et al. Range of motion change after cervical arthroplasty with ProDisc-C and Prestige artificial discs compared with anterior cervical discectomy and fusion. J Neurosurg Spine. 2007;7(1):40-46.
[39]Terai T, Faizan A, Sairyo K, et al. Operated and adjacent segment motions for fusion versus cervical arthroplasty: a pilot study. Clin Orthop Relat Res. 2011;469(3):682-687.
[40]王方,吴继功,邹德威,等.颈椎人工椎间盘置换术的研究进展[J]. 中国脊柱脊髓杂志,2011, 21(6):519-521. |
[1] | Pu Rui, Chen Ziyang, Yuan Lingyan. Characteristics and effects of exosomes from different cell sources in cardioprotection [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 1-. |
[2] | Xu Feng, Kang Hui, Wei Tanjun, Xi Jintao. Biomechanical analysis of different fixation methods of pedicle screws for thoracolumbar fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1313-1317. |
[3] | Chen Xinmin, Li Wenbiao, Xiong Kaikai, Xiong Xiaoyan, Zheng Liqin, Li Musheng, Zheng Yongze, Lin Ziling. Type A3.3 femoral intertrochanteric fracture with augmented proximal femoral nail anti-rotation in the elderly: finite element analysis of the optimal amount of bone cement [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1404-1409. |
[4] | Zhang Chao, Lü Xin. Heterotopic ossification after acetabular fracture fixation: risk factors, prevention and treatment progress [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1434-1439. |
[5] | Zhou Jihui, Li Xinzhi, Zhou You, Huang Wei, Chen Wenyao. Multiple problems in the selection of implants for patellar fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1440-1445. |
[6] | Wang Debin, Bi Zhenggang. Related problems in anatomy mechanics, injury characteristics, fixed repair and three-dimensional technology application for olecranon fracture-dislocations [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1446-1451. |
[7] | Ji Zhixiang, Lan Changgong. Polymorphism of urate transporter in gout and its correlation with gout treatment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1290-1298. |
[8] | Yuan Mei, Zhang Xinxin, Guo Yisha, Bi Xia. Diagnostic potential of circulating microRNA in vascular cognitive impairment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1299-1304. |
[9] | Wang Xianyao, Guan Yalin, Liu Zhongshan. Strategies for improving the therapeutic efficacy of mesenchymal stem cells in the treatment of nonhealing wounds [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1081-1087. |
[10] | Wan Ran, Shi Xu, Liu Jingsong, Wang Yansong. Research progress in the treatment of spinal cord injury with mesenchymal stem cell secretome [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1088-1095. |
[11] | Liao Chengcheng, An Jiaxing, Tan Zhangxue, Wang Qian, Liu Jianguo. Therapeutic target and application prospects of oral squamous cell carcinoma stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1096-1103. |
[12] | Zhao Min, Feng Liuxiang, Chen Yao, Gu Xia, Wang Pingyi, Li Yimei, Li Wenhua. Exosomes as a disease marker under hypoxic conditions [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1104-1108. |
[13] | Xie Wenjia, Xia Tianjiao, Zhou Qingyun, Liu Yujia, Gu Xiaoping. Role of microglia-mediated neuronal injury in neurodegenerative diseases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1109-1115. |
[14] | Li Shanshan, Guo Xiaoxiao, You Ran, Yang Xiufen, Zhao Lu, Chen Xi, Wang Yanling. Photoreceptor cell replacement therapy for retinal degeneration diseases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1116-1121. |
[15] | Jiao Hui, Zhang Yining, Song Yuqing, Lin Yu, Wang Xiuli. Advances in research and application of breast cancer organoids [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1122-1128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||